
© ISO WG11 N103 - ISO/NWI 10303-14

1

INTERNATIONAL STANDARD © ISO ISO/NWI 10303-14

Industrial automation systems and integration —
Product data representation and exchange —
Part 14:
Description methods: The EXPRESS-X Language Reference
Manual

1. Scope

This part of ISO 10303 defines a language by which relationships between data defined by models in
the EXPRESS language can be specified. The language is called EXPRESS-X.

EXPRESS-X is a structural data mapping language. It consists of language elements that allow an
unambiguous specification of the relationship between models.

The following are within the scope of this part of ISO 10303:

– Mapping data defined by one EXPRESS model to data defined by another EXPRESS model.

– Mapping data defined by one version of an EXPRESS model to data defined by another version of
an EXPRESS model, where the two schemas have different names.

– Specification of requirements for data translators for data sharing and data exchange applications.

– Specification of alternate views of data defined by an EXPRESS model.

– An alternate notation for application protocol mapping tables.

– Bi-directional mappings where mathematically possible.

– Specification of constraints evaluated against data produced by mapping.

The following are outside the scope of this part of ISO 10303:

– Mapping of data defined using means other than EXPRESS.

– Identification of the version of an EXPRESS schema.

– Graphical representation of constructs in the EXPRESS-X language.

ISO/NWI 10303-14 - WG11 / N103 © ISO

2

2. Normative references

The following standards contain provisions that, through reference in this text, constitute provisions of
this part of ISO 10303. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this part of ISO 10303 are encouraged to inves-
tigate the possibility of applying the most recent editions of the standards indicated below. Members of
IEC and ISO maintain registers of currently valid International Standards.

ISO 10303-1:1994, Industrial automation systems and integration — Product data representation and
exchange — Part 1: Overview and fundamental principles.

ISO standard 10303 part(11) version (3), Industrial automation systems and integration — Product
data representation and exchange — Part 11: Description methods: The EXPRESS language reference
manual.

3. Definitions

3.1 Terms defined in ISO 10303-1

This part of ISO 10303 makes use of the following terms defined in ISO 10303-1.

– data;

– information;

– information model.

3.2 Terms defined in ISO 10303-11

This part of ISO 10303 makes use of the following terms defined in ISO 10303-11.

– complex entity data type;

– complex entity (data type) instance;

– constant;

– entity;

– entity data type;

– entity (data type) instance;

© ISO WG11 N103 - ISO/NWI 10303-14

3

– instance;

– partial complex entity data type;

– partial complex entity value;

– population;

– simple entity (data type) instance;

– subtype/supertype graph;

– token;

– value.

3.3 Other definitions

3.3.1 binding extent: a set of binding instances constructed from instances in the source data sets and
view extents as required by the FROM language element of the VIEW or MAP declaration.

3.3.2 binding instance: an element of a binding extent.

3.3.3 source data set: a collection of entity instances where each entity instance conforms to an entity
data type defined in the associated schema, and the collection conforms to the constraints of the
schema.

3.3.4 target data set: a collection of entity instances produced by means of mapping.

3.3.5 map: the declaration of a relationship between data of one or more source entity types or view
data types and data of one or more target entity types.

3.3.6 network mapping : a mapping to many target entity instances.

3.3.7 qualified binding extent : a subset of the binding extent consisting of only those binding
instances satisfying the selection criteria of the view/map declaration.

3.3.8 selection criteria : EXPRESS logical expressions used to identify the qualified binding extent
from a binding extent.

3.3.9 source extent : a view extent or entity population used to create binding extent.

3.3.10 view: an alternative organization of the information in an EXPRESS model.

3.3.11 view data type: the representation of a view.

3.3.12 view data type instance: a named unit of information that is a member of the view extent estab-
lished by a view data type.

ISO/NWI 10303-14 - WG11 / N103 © ISO

4

3.3.13 view extent : an aggregate of view data type instances that contains all instances that can be con-
structed from the qualified binding extent.

4. Conformance requirements

4.1 Formal specifications written in EXPRESS-X

4.1.1 Lexical language

A formal specification written in EXPRESS-X shall be consistent with a given level as specified below.
A formal specification is consistent with a given level when all checks identified for that level as well
as all lower levels are verified for the specification.

Levels of checking

Level 1: Reference checking. This level consists of checking the formal specification to ensure that
it is syntactically and referentially valid. A formal specification is syntactically valid if it matches
the syntax generated by expanding the primary syntax rule (syntax) given inAnnex A. A formal
specification is referentially valid if all references to EXPRESS-X items are consistent with the
scope and visibility rules defined in clauses 10 and11.

Level 2: Type checking. This level consists of Level 1 checking and checking the formal specifica-
tion to ensure that it is consistent with the following:

– expressions shall comply with the rules specified in clause12 and in ISO 10303-11:1994
clause12;

– assignments shall comply with the rules specified in ISO 10303-11:1994 clause 13.3.

Level 3: Value checking. This level consists of Level 2 checking and checking the formal specifica-
tion to ensure that it is consistent with statements of the form, ‘A shall be greater than B’, as speci-
fied in clause7 to14 of ISO 10303-11:1994. This is limited to those places where both A and B can
be evaluated from literals and/or constants.

Level 4: Complete checking. This level consists of checking the formal specification to ensure that
it is consistent with all stated requirements as specified in this part of ISO 10303 and of ISO 10303-
11:1994.

© ISO WG11 N103 - ISO/NWI 10303-14

5

4.2 Implementations of EXPRESS-X

4.2.1 EXPRESS-X language parser

An implementation of an EXPRESS-X language parser shall be able to parse any formal specification
written in EXPRESS-X consistent with the conformance class associated with that implementation. An
EXPRESS-X language parser shall be said to conform to a particular checking level (as defined
in4.1.1) if it can apply all checks required by that level (and any level below it) to a formal specifica-
tion written in EXPRESS-X.

The implementor of an EXPRESS-X language parser shall state all constraints that the implementation
imposes on the number and length of identifiers, on the range of processed numbers, and on the maxi-
mum precision of real numbers. Such constraints shall be documented for the purpose of conformance
testing.

4.2.2 EXPRESS-X mapping engine

An implementation of an EXPRESS-X mapping engine shall be able to evaluate and/or execute any
formal specification written in EXPRESS-X, consistent with the conformance class associated with that
implementation. The execution and/or evaluation of a mapping is relative to one or more source data
sets; the specification of how these data sets are made available to the mapping engine is outside the
scope of this part of ISO10303.

The implementor of an EXPRESS-X mapping engine shall state any constraints that the implementa-
tion imposes on the number and length of identifiers, on the range of processed numbers, and on the
maximum precision of real numbers. Such constraints shall be documented for the purpose of conform-
ance testing.

4.3 Conformance classes

An implementation shall be said to conform to conformance class1 if it processes all the declarations
that may appear in a SCHEMA_VIEW declaration.

An implementation shall be said to conform to conformance class2 if it processes all the declarations
that may appear in this part of ISO 10303.

5. Language specification syntax

The notation used to present the syntax of the EXPRESS-X language is defined in this clause.

ISO/NWI 10303-14 - WG11 / N103 © ISO

6

The full syntax for the EXPRESS-X language is given in AnnexA. Portions of those syntax rules are
reproduced in various clauses to illustrate the syntax of a particular statement. Those portions are not
always complete. It will sometimes be necessary to consult AnnexA for the missing rules. The syntax
portions within this part of ISO 10303 are presented in a box. Each rule within the syntax box has a
unique number toward the left margin for use in cross-references to other syntax rules.

The syntax of EXPRESS-X is defined in a derivative of Wirth Syntax Notation (WSN).

NOTE — See annex B for a reference describing Wirth Syntax Notation.

The notational conventions and WSN defined in itself are given below.

syntax= { production } .

production= identifier '=' expression '.' .

expression= term { '|' term } .

term= factor { factor } .

factor= identifier | literal | group | option | repetition .

identifier= character { character } .

literal= '''' character { character } '''' .

group= '(' expression ')' .

option= '[' expression ']' .

repetition= '{' expression '}' .

– The equal sign '=' indicates a production. The element on the left is defined to be the combination
of the elements on the right. Any spaces appearing between the elements of a production are mean-
ingless unless they appear within a literal. A production is terminated by a period '.'.

– The use of an identifier within a factor denotes a nonterminal symbol that appears on the left side
of another production. An identifier is composed of letters, digits, and the underscore character.
The keywords of the language are represented by productions whose identifier is given in upper-
case characters only.

– The word literal is used to denote a terminal symbol that cannot be expanded further. A literal is a
sequence of characters enclosed in apostrophes. For an apostrophe to appear in a literal it must be
written twice, i.e., ''''.

– The semantics of the enclosing braces are defined below:

• curly brackets '{ }' indicates zero or more repetitions;

• square brackets '[]' indicates optional parameters;

• parenthesis '()' indicates that the group of productions enclosed by parenthesis shall be used
as a single production;

• vertical bar '|' indicates that exactly one of the terms in the expression shall be chosen.

© ISO WG11 N103 - ISO/NWI 10303-14

7

The following notation is used to represent entire character sets and certain special characters which are
difficult to display:

– \a represents any character from ISO/IEC10646-1;

– \n represents a newline (system dependent) (see clause 7.1.5.2 of ISO 10303-11:1994).

6. Basic language elements

6.1 Overview

This clause specifies the basic elements from which an EXPRESS-X mapping specification is com-
posed: the character set, remarks, symbols, reserved words, identifiers, and literals.

The basic language elements of EXPRESS-X are those of the EXPRESS language defined in Clause 7
of ISO10303-11, with the exceptions noted below.

6.2 Reserved words

The reserved words of EXPRESS-X are the keywords and the names of built-in constants, functions,
and procedures. Any reserved word in EXPRESS (ISO10303-11:1994) shall also be a reserved word in
EXPRESS-X. The reserved words shall not be used as identifiers. The additional reserved words of
EXPRESS-X are described below.

In the case that a legal EXPRESS identifier is a reserved word in EXPRESS-X, schemas using that
identifier can be mapped by renaming the conflicting identifier using the AS keyword in the REFER-
ENCE language element.

In addition to the keywords of EXPRESS defined in ISO10303-11:1994, the following are keywords
of EXPRESS-X.

Table 1 — Additional EXPRESS-X keywords

END_SCHEMA_MAP
MAP

SOURCE

EACH
END_SCHEMA_VIEW

IDENTIFIED_BY

PARTITION
TARGET

END_TYPE_MAP
IMPORT_MAPPING

SCHEMA_MAP

TYPE_MAP

END_MAP
END_VIEW

SCHEMA_VIEW

VIEW

ISO/NWI 10303-14 - WG11 / N103 © ISO

8

7. Data types

7.1 Overview

The data types defined here as well as those defined in the EXPRESS language (clause8 of ISO 10303-
11:1994) are provided as part of the language.

Every view attribute has an associated data type.

7.2 View data type

View data types are established by view declarations (see clause 9.3). A view data type is assigned an
identifier in the defining schema map or schema view. The view data type is referenced by this identi-
fier.

Rules and restrictions:

a) view_ref shall be a reference to a view visible in the current scope.

b) view_ref shall not refer to a return view (clause9.3.5).

EXAMPLE 1 — following declaration defines a view data type named circle.

VIEW circle;
 FROM (e : ellipse);
 WHERE (e.major_axis = e.minor_axis);
 SELECT
 radius : REAL := e.minor_axis;
 center : point := e.center;
END_VIEW;

Syntax:

127 view_reference = [(schema_map_ref | schema_view_ref) '.'] view_ref
.

© ISO WG11 N103 - ISO/NWI 10303-14

9

8. Fundamental principles

8.1 Overview

The reader of this document is assumed to be familiar with the following concepts, in addition to the
concepts described in clause5 of ISO10303-11:1994.

EXPRESS-X provides for the specification of:

– alternative views of the data described by an information model described in EXPRESS;

– the transformation of data described by elements of source EXPRESS models into data described
by elements of target EXPRESS models.

A SCHEMA_MAP provides declarations for the specification of the former and latter.

A SCHEMA_VIEW provides declarations for the specification of the former.

NOTE — A SCHEMA_VIEW may be transformed into an EXPRESS model as described in Annex B.

The specification of a type map defines how data described by EXPRESS defined types may be trans-
formed between the source and target models.

EXPRESS function and procedure specifications may form part of an EXPRESS-X schema in order to
support the definition of views, maps, or type maps.

8.2 Typographical conventions

In this specification a binding instance is denoted as an ordered set of entity / view instance name sep-
arated by commas “,” and enclosed in angle brackets, “<>”. Entity instance names are defined in ISO
standard 10303 part(21) clause7.3.4. View instance names are specified using the same syntax.

EXAMPLE 2 — Given the view declaration:

VIEW example;
 FROM p: person, o : organization;
...
END_VIEW;

the following may be binding instances:

<#1,#31>
<#2,#32>.

These binding instances may correspond to the following data presented as entity instances as defined in
ISO standard 10303 part (21):

ISO/NWI 10303-14 - WG11 / N103 © ISO

10

#1=person('James','Smith');
#2=person('Fredrick','Jones');
#31=organization('Engineering');
#32=organization('Sales');

In this specification the data referenced by a binding extent may be presented in tabular form where the
left-most column identifies the binding instance. The uppermost column headings, excluding the left-
most column, identify express entity types or view data types. The lower headings identify the names of
attributes corresponding to the entity identified in the uppermost column under which it falls, or when
the heading cell contains ‘#’, the entity instance name.

EXAMPLE 3 — This example illustrates the use of tables to depict a binding extent. The concept
of a binding extent is defined in subsequent clauses and is not necessary to understand the exam-
ple. The example uses the data defined in example2 and the following EXPRESS schema:

SCHEMA example_3;
ENTITY person;
 first_name : STRING;
 last_name : STRING;
END_ENTITY;
ENTITY organization;
 department_name : STRING;
END_ENTITY;
END_SCHEMA;

In this specification a view instance, target entity or target entity network corresponding to particular
binding instance is denoted by the name of the view declaration (view_id) or map declaration (
map_id) of which it is a member followed by a left parenthesis ‘(‘, followed by the binding instance,
followed by a right parenthesis ‘)’.

8.3 Binding process

This specification defines a language and an execution model. The execution model is composed of two
phases: a binding process and an instantiation process. The evaluation of views and maps share a com-
mon binding process but differ with respect to instantiation. A binding is an environment in which

Binding
Instance

person organization

first_name last_name # department_name

<#1,#31> #1 'James' 'Smith' #31 'Engineering'

<#1,#32> #1 'James' 'Smith' #32 'Sales'

<#2,#31> #2 'Fredrick' 'Jones' #31 'Engineering'

<#2,#32> #2 'Fredrick' 'Jones’ #32 'Sales’

© ISO WG11 N103 - ISO/NWI 10303-14

11

variables are given values during the instantiation process. Each binding instance provides a set of val-
ues to be assigned to the variables. The relationship between bindings and the source data is defined in
subsequent clauses of this specification.

8.4 Implementation Environment

The EXPRESS-X language does not describe an implementation environment. In particular,
EXPRESS-X does not specify:

– how references to names are resolved;

– how other schemas, schema views, or schema maps are known;

– how input and output data sets are specified;

– how mappings are executed for instances that do not conform to an EXPRESS schema.

The evaluation of a view (i.e. the application of the view to a source data set) produces a view extent.
Evaluation of a map may produce entity instances in the target data set. EXPRESS-X does not specify
what effect modification of source data may have on views and maps after their evaluation.

9. Declarations

9.1 Overview

This clause defines the various declarations available in EXPRESS-X. An EXPRESS-X declaration
creates a new EXPRESS-X item and associates an identifier with it. The item may be referenced else-
where by this identifier.

EXPRESS-X provides the following declarations:

– View;

– Map;

– Schema_view;

– Schema_map;

– Type_map.

In addition, an EXPRESS-X specification may contain the following declarations defined in
ISO10303-11:1994:

ISO/NWI 10303-14 - WG11 / N103 © ISO

12

– Constant;

– Function;

– Procedure;

– Rule.

9.2 Binding extent declaration

9.2.1 Declaration of qualified binding extents

A qualified binding extent is defined by identification and selection of binding instances.

The FROM language element defines the structure of instances in the binding extent. The FROM lan-
guage element consists of one or more source_parameter. Each source parameter associates identifiers
with an extent.

Rules and restrictions:

a) source_parameter_ids shall be unique within the scope of the map or view declaration.

The binding extent is computed as the cartesian product of instances in the extents referenced in the
FROM language element.

Syntax:

39 binding_decl = [from_clause] [where_clause] [identified_by_clause
].

Syntax:

55 from_clause = FROM source_parameter { ';' source_parameter } ';'.
56 source_parameter = source_parameter_id {',' source_parameter_id } ':'

extent_reference.

© ISO WG11 N103 - ISO/NWI 10303-14

13

EXAMPLE 4 — A binding extent is constructed over the entity extents of entity types item and
person.

SCHEMA example;
ENTITY item;
 item_number : INTEGER;
END_ENTITY;
ENTITY person;
 name : STRING;
END_ENTITY;
END_SCHEMA;

VIEW items_and_persons
FROM i : item; p : person;
SELECT
 item_number : INTEGER := i.part_number;
 responsible : STRING := p.name;
END_VIEW;

Given a population (written as ISO 10303-21 entity instances):

#1=item(123);
#2=item(234);
#33=person('Jones');
#44=person('Smith');

the corresponding binding extent is: <#1,#33>,<#1,#44>,<#2,#33>,<#2,#44>.

The WHERE language element defines a selection criteria on binding instances. The WHERE language
element, together with the source extents identified in the FROM language element define the qualified
binding extent. A binding instance in the binding extent is a member of the qualified binding extent
unless one or more domain rule expressions of the WHERE language element evaluates to FALSE for
the application of that expression to the binding instance.

The syntax of the WHERE language element i s as defined in ISO 10303-11;1994, clause 9.2.2.2.

EXAMPLE 5 — The following example extends the VIEW declaration of Example12 by an
WHERE language element to filter specific persons and to join items and persons.

VIEW items_and_persons;
FROM i : item; p : person;
WHERE (p.name = 'smith') OR (p.name = 'jones');
 (i.approved_by = p.name);
SELECT
 name : STRING := p.name;
END_VIEW;

After the evaluation of the WHERE language element predicates, the output stream will be modified as fol-
lows: all grey boxes will be filtered out.

ISO/NWI 10303-14 - WG11 / N103 © ISO

14

9.2.2 Identification of view and target instances

The IDENTIFIED_BY declaration defines an equivalence relation between instances in a qualified
binding extent.

Two qualified binding instances are in the same equivalence class if, for each element of the
IDENTIFIED_BY clause, evaluating the expression in the context of each of those instances produces
result that are instance equal (ISO 10303-11;1994 clause 12.2.2) [NOTE we should really reference our
own extended instance equality here].

EXAMPLE 6 — This example illustrates the use of IDENTIFIED_BY.

VIEW department;
 FROM e : employee;
 IDENTIFIED_BY e.department_name;
 SELECT
 name : STRING := e.department_name;
END_VIEW;
ENTITY employee;
 name : STRING;
 department_name : STRING;
END_ENTITY;
...
END_VIEW;

#1=employee('Jones','Engineering');
#2=employee('Smith','Sales');
#3=employee('Doe','Engineering');

Given the view and population above, there are two equivalence classes: {#1,#3} and {#2}.

Binding
Instance

item item_version ddid person

id version approved_by id ddid id name

<#1,#3,#5,#6> #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #6 smith

<#1,#3,#5,#7> #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #7 jones

<#1,#3,#5,#8> #1 i_1 #3 smith #3 iv_1 #5 #5 ddid_1 #8 miller

<#2,#4,#5,#6> #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #6 smith

<#2,#4,#5,#7> #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #7 jones

<#2,#4,#5,#8> #2 i_2 #4 jones #4 iv_2 #5 ddid_1 #8 miller

© ISO WG11 N103 - ISO/NWI 10303-14

15

Rules and restrictions:

a) An expression in an IDENTIFIED_BY language element shall not refer, through any level
of indirection, to the targets of the map or any of their attributes.

9.3 View declaration

9.3.1 Overview

A view declaration creates a view data type and declares an identifier to refer to it.

EXAMPLE 7 — The following view collects the information about persons serving in roles
within organizations. This information is collected from two instances of person_and_organization
and cc_design_person_and_organization_assignment. The two instances shall be related via the
assigned_person_and_organization attribute of the
cc_design_person_and_organization_assignment.

VIEW arm_person_role_in_organization;
FROM pao : person_and_organization;
 ccdpaoa : cc_design_person_and_organization_assignment;
WHERE ccdpaoa.assigned_person_and_organization :=: pao;
SELECT
 person : person := pao.the_person;
 org : organization := pao.the_organizaion;
 role : label := ccdpaoa.role.name;
END_VIEW;

Rules and restrictions:

a) If in a view_decl a subtype_of_clause is specified, no from_clause shall be declared in the
view_decl_bodys of any partition.

b) If no subtype_of_clause is specified, the from_clause is required in every view_decl_body of

Syntax:

57 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.

Syntax:

120 view_decl = VIEW view_id [: base_type][supertype_rule] [
subtype_of_clause] ';' (view_partitions | view_decl_body) END_VIEW
';' .

124 view_partition = PARTITION partition_id ';' view_decl_body .
121 view_decl_body = binding_decl view_project_clause .

ISO/NWI 10303-14 - WG11 / N103 © ISO

16

that view_decl.

c) Only a return view, clause9.3.5, shall specify a base_type in view_decl.

9.3.2 View attributes

An attribute of a view data type represents a property of the view whose value is computed as the eval-
uation of its view_attr_assgnmt_expr, an expression.

The name of a view attribute (view_attribute_id) represents the role played by it associated
value in the context of the view in which it appears.

The expression represented by a view_attr_assgnmt_expr is evaluated in the context of a quali-
fied binding instance in the qualified binding extent.

If an equivalence class defined by an IDENTIFIED_BY language element contains more than one qual-
ified binding instance, then the value of the view_attr_assgnmt_expression is computed as follows:

– If for each such binding, the evaluation of the view_attr_assgnmt_expr (or
map_attr_assgnmt_expr in the case of a MAP) of the attribute produces an equal value, that
value is assigned to the attribute.

– If for two or more bindings, the evaluation of the view_attr_assgnmt_expr (or
map_attr_assgnmt_expr in the case of a MAP) of the attribute produces unequal values, the
indeterminate value is assigned to the attribute.

EXAMPLE 8 — This example illustrates the assignment of values where an equivalence class
contain more than one qualified binding instance.

(* source schema *) (* target schema *)
SCHEMA src; SCHEMA tar;
ENTITY employee; ENTITY department;
 name : STRING; employee : STRING;
 manager : STRING; manager : STRING;
 dept : STRING; name : STRING;
END_ENTITY; END_ENTITY;
END_SCHEMA; END_SCHEMA;

© ISO WG11 N103 - ISO/NWI 10303-14

17

(* mapping schema *)
SCHEMA_MAP;
SOURCE src; TARGET tar;
MAP department_map AS d : department
FROM e : src.employee
IDENTIFIED_BY e.dept;
SELECT
 d.name := e.dept;
 d.manager := e.manager;
 d.employee := e.name;
END_MAP;
END_SCHEMA_MAP;

#1=employee('Smith','Jones','Marketing');
#2=employee('Doe','Jones','Marketing');

Given the data above the target data set contains one entity instance, #1=department(?,’Jones','Marketing'). The
attribute department.employee is indeterminate because the expression for this attribute evaluates to two different
values ('Smith' and 'Doe').

Rules and restrictions:

a) The view_attr_assgnmt_expr shall be assignment compatible with the data type of the
view attribute.

b) Each view_attribute_id declared in the view declaration shall be unique within that declaration.

9.3.3 View partitions

A view extent may be partitioned. The extent of a view that is partitioned is the concatenation of the
extents defined by its partitions, each partition defining its own FROM language element and selection
criteria. Partitions , if present, shall be named. A partition_id names a partition.

Syntax:

126 view_project_clause = (SELECT view_attr_decl_stmt_list) | (RETURN
expression) .

114 view_attr_decl_stmt_list = view_attribute_decl { view_attribute_decl }
.

115 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.']
base_type ':=' view_attr_assgnmt_expr ';' .

113 view_attr_assgnmt_expr = expression | choice_expr | inline_view_decl |
view_call .

ISO/NWI 10303-14 - WG11 / N103 © ISO

18

EXAMPLE 9 — In ISO 10303-201, the application object organization may be mapped to
either a person, an organization, or both a person_and_organization entity in the
AIM. This is specified in EXPRESS-X as follows:

VIEW arm_organization
PARTITION a_single_person;
 FROM p : person;
 ...
PARTITION a_single_organization;
 FROM o: organization;
 ...
PARTITION a_person_in_an_organization;
 FROM po: person_and_organization;
 ...
END_VIEW;

Rules and restrictions:

a) All partitions of a VIEW declaration shall define the same attributes (including names and
types)

b) The attributes of a VIEW declaration shall appear in the same order in each of its partitions.

9.3.4 Constant partitions

A partition that omits the FROM, WHERE, and IDENTIFIED_BY clauses is called a constant parti-
tion. Such a partition represents a single view instance in the result with no correspondence to the
source data.

EXAMPLE 10 — This example illustrates the use of constant partitions.

VIEW person;
PARTITION mary;
 SELECT
 name : STRING := 'Mary';
 age : INTEGER := 22;
PARTITION john;
 name : STRING := 'John';
 age : INTEGER := 23;
END_VIEW;

Syntax:

124 view_partition = PARTITION partition_id ';' view_decl_body .

© ISO WG11 N103 - ISO/NWI 10303-14

19

9.3.5 Return Views

A view whose body begins with the RETURN keyword in its body computes a BAG of values. One
value is computed for each instance of the qualified binding extent by evaluating the expression follow-
ing the RETURN keyword. A return view does not define a new type. All of the values computed must
be mutually type compatible with each other and with the t ype that optionally m ay be specified directly
after the name of the view.

Rules and restrictions:

a) A return view shall not use the SELECT language element in any partition.

b) A return view shall not specify the subtype_of_clause language element.

EXAMPLE 11 — EXAMPLE. This example defines a bag whose members are instances of the
type car that have the value 'red' in their color attribute.

VIEW red_car;
 FROM rc:car;
 WHERE rc.color ='red';
 RETURN rc;
END_VIEW;

EXAMPLE 12 — EXAMPLE. This example defines a bag whose members are strings. The
strings come from two sources.

VIEW owner_name : STRING;
 PARTITION one;
 FROM po:person;
 RETURN po.name;
 PARTITION two;
 FROM or: organization;
 RETURN or.name;
END_VIEW;

9.3.6 Specifying subtype views

EXPRESS-X allows for the specification of views as subtypes of other views, where a subtype view is
a specialization of its supertype. This establishes an inheritance (i.e., subtype/supertype) relationship
between the views in which the subtype inherits the properties (i.e., attributes and selection criteria) of
its supertype. A view is a subtype view if it contains a SUBTYPE declaration. The extent of a subtype
view is a subset of the extent of its supertype as defined by the selection criteria defined by the WHERE
language element in the subtype.

A subtype view inherits attributes from its supertype view(s). Inheritance of attributes shall adhere to
the rules and restrictions of attribute inheritance defined in ISO 10303-11;1994 clause 9.2.3.3.

ISO/NWI 10303-14 - WG11 / N103 © ISO

20

A subtype view declaration may redefine attributes found in one of its supertypes. The redefinition of
attributes shall adhere to the rules and restrictions of attribute redefinition defined in ISO 10303-
11;1994 clause 9.2.3.4.

A view instance shall be created if the selection criteria of the most general supertype is satisified. The
view instance shall have the type corresponding to a subtype view if all of the selection criteria condi-
tions in the subtype view in addition to all of its supertype views evaluate to TRUE or UNKNOWN.

Rules and restrictions:

a) A view declaration shall contain either a FROM language element or a subtype language ele-
ment, but not both.

b) A subtype view shall not specify the IDENTIFIED_BY lanaguage element.

c) Exactly one supertype view of a subtype view shall define a FROM language element

d) The partitions of a subtype view shall be a subset of the partitions of its supertype view.

e) A subtype view shall not use the return language element.

EXAMPLE 13 — The following view illustrates subtyping. The view male defines an additional
membership requirement (gender = ‘M’) for view instances of the subtype.

VIEW person;
FROM e:employee;
END_VIEW;

VIEW male SUBTYPE OF (person);
WHERE e.gender = 'M';
...
END_VIEW;

EXAMPLE 14 — This example illustrates the use of partitions and subtype views.

VIEW j;
PARTITION first:
FROM s:three, t:four
WHERE cond6;

PARTITION second:
FROM r:four, q:five
WHERE cond7;
END_VIEW;

Syntax:

102 subtype_of_clause = SUBTYPE OF '(' view_or_map_reference { ','
view_or_map_reference } ')' .

© ISO WG11 N103 - ISO/NWI 10303-14

21

VIEW k SUBTYPE OF (j);
PARTITION second:
WHERE cond9;
END_VIEW;

Any subtype view for which ‘k’ is a supertype can only include partition ‘second’.

9.3.7 SUPERTYPE constraints

A view declaration may define SUPERTYPE constraints (ISO standard 10303 part (11) clause 9.2.4).
Whether or not a SUPERTYPE constraint is satisfied has no effect on the execution model or content of
view extents.

EXAMPLE 15 —

VIEW a ABSTRACT SUPERTYPE OF ONEOF(b ANDOR c, d);
 ...
END_VIEW;

An instance of ‘a’ is valid if it has at least two types (‘a’ and something else) because of the ABSTRACT
keyword, and one of the other types is either ‘d’ or some combination of ‘b’ and ‘c’ because of the ONEOF
keyword.

9.4 Map declaration

9.4.1 Overview

The MAP declaration supports the specification of correspondence between semantically equivalent
elements of two or more EXPRESS models possessing differing structure. Each MAP declaration speci-
fies how source schema entity i nstances of one or more types are to be mapped to target instances.

A map declaration supports, in a single declaration, the mapping from many source entities to many tar-
get entities.

The header identifies one or more entity types defined in the target EXPRESS schema to be created
upon evaluation.

Syntax:

67 map_decl = MAP map_id AS target_parameter { target_parameter } (
(map_decl_body { map_partitions }) | map_decl_body) END_MAP ';' .

71 map_partition = PARTITION partition_id ':' map_decl_body .
68 map_decl_body = [subtype_of_clause] binding_decl {

entity_instantiation_loop } map_project_clause .
104 target_parameter = [target_parameter_id { ',' target_parameter_id }

':'] [AGGREGATE [bound_spec] OF] target_entity_reference ';' .

ISO/NWI 10303-14 - WG11 / N103 © ISO

22

A target entity type shall not be mapped in more than one MAP declaration in which the headers of those
declarations consist only of a single target entity type. However, one target entity can be mapped in
more than one MAP declarations (say n), if n-1 MAP declarations are network mappings. The MAP dec-
laration is named (map_id).

NOTE — A single target entity type may be mapped in various ways by means of partitions.

EXAMPLE 16 — In the example below, a pump in the source data model is mapped to a product
and product_related_product_category.

MAP network_for_pump AS pr : product;
 prpc : product_related_product_category;
FROM p : pump
 pr.id := p.id;
 pr.name := p.name;
 prpc.name := 'pump';
 prpc.products := [pr];
END_MAP;

The initial values of the attributes of the newly created instance(s) are indeterminate.

9.4.2 Evaluation of the MAP body

The MAP declaration may define a SELECT language element consisting of either an extent reference
or a number of target attribute assignment statements. Alternatively, the SELECT language element
may be omitted entirely:

– A SELECT language element specifying a source_parameter_id signifies that the instances of the
corresponding extent are to be mapped identically. (i.e. such that they are value equal to instances
in the source extents).

– A SELECT language element specifying target attribute assignment statements
(map_attribute_declarations) is used to assign values to the attributes of the target
entity instances.

– If the SELECT language element is omitted, entity instances value equal to those specified in the
FROM language element are created on evaluation.

© ISO WG11 N103 - ISO/NWI 10303-14

23

The map_attr_assgnmt_expr shall produce a value that is assignment compatible with the target
entity attribute (see ISO10303-11;1994 clause 13.3).

The syntactic form:
SELECT source_parameter_id
declares that an entity instance value equivalent to that bound to source_parameter_id shall
appear in the target data set.

The syntactic form
SELECT map_attr_decl_stmt_list
assigns values (map_attr_assgnmt_expr) to the target entity attributes (l-values) identified by
the syntactic form of the left-hand side of map_attribute_declaration (i.e., before the ‘:=’).

A map_attr_decl_stmt_list may assign to the multiple elements of an aggregate of a target
entity type. The order of execution of the attribute assignments in this case is arbitrary.

9.4.3 Instantiation of aggregates

Evaluation of a map may produce aggregates of target entity types. The declared type returned in this
situation is AGGREGATE. The initial value of the aggregate is indeterminant.

Rules and restrictions:

a) If bound_spec is specified it is treated as a constraint.

Syntax:

73 map_project_clause = (SELECT map_attr_decl_stmt_list) | (RETURN
expression) .

64 map_attr_decl_stmt_list = map_attribute_declaration {
map_attribute_declaration } .

65 map_attribute_declaration = [target_parameter_ref [index_qualifer]
[group_qualifier] '.'] attribute_ref [index_qualifier] ':='
map_attr_assgnmt_expr ';' .

Syntax:

104 target_parameter = [target_parameter_id { ',' target_parameter_id }
':'] [AGGREGATE [bound_spec] OF] target_entity_reference ';' .

ISO/NWI 10303-14 - WG11 / N103 © ISO

24

EXAMPLE 17 — Body of a MAP declaration with attribute assignments of multiple target
instances of the same entity.

MAP connection_zone_shapes AS
 pdr : AGGREGATE OF aim.property_definition_representation;
 sr : AGGREGATE OF aim.shape_representation;
 FROM cz : arm.connection_zone;
 FOR EACH shape IN cz.zone_shape INDEXING i;
 SELECT
 sr[i].name := 'zone shape';
 pdr[i].definition := pd@connection_zone_map(cz);
 pdr[i].used_representation := sr[i];
END_MAP;

9.4.4 Iteration under a single binding instance

9.4.4.1 Overview

The instantiation_loop_control and repeat_control provides two mutually exclusive
forms of iteration: iteration over the collection of instances in an EXPRESS aggregate; and interaction
incrementing a numeric variable. The latter of these, provided by repeat_control is described in
ISO 10303-11; 1994.;

Rules and restrictions:

a) variable_id after the keyword EACH is of the same type as the elements of
source_attribute_reference.

b) variable_id after the keyword INDEXING is of type NUMBER with values greater than one.

9.4.4.2 Control by numeric increment

The FOR repeat control allows for the iteration under a single binding instance by means of the
EXPRESS repeat_control.

Syntax:

46 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .
62 instantiation_loop_control = instantiation_foreach_control |

repeat_control .
61 instantiation_foreach_control = EACH variable_id IN

source_attribute_reference [INDEXING variable_id] { AND variable_id
IN source_attribute_reference [INDEXING variable_id] } .

© ISO WG11 N103 - ISO/NWI 10303-14

25

EXAMPLE 18 — This example illustrates the use of the EXPRESS repeat_control in
Express-X target instantiation. A collection of target child entity instances are created for each
source parent entity. The number created is specified by the parent entity attribute
number_of_children.

SCHEMA source; SCHEMA target;
ENTITY parent; ENTITY parent;
number_of_children : INTEGER; END_ENTITY;
END_ENTITY; ENTITY child;
END_SCHEMA; parent : parent;
 END_ENTITY;
 END_SCHEMA;

SCHEMA_MAP example;
 SOURCE src : source;
 TARGET tar : target;
MAP tp AS tar.parent;
FROM sp : src.parent;
END_MAP;

MAP children_map AS c : AGGREGATE [0:?] OF tar.child;
FROM p : src.parent;
FOR i := 1 TO p.number_of_children
SELECT
 c[i].parent := p;
END_MAP;
END_SCHEMA_MAP;

EXAMPLE 19 — We assume that for each source instance of item exactly three corresponding
target instances have to be generated. That is specified in the following mapping specification.

ENTITY item_with_duplicates;
 id : STRING;
 index : INTEGER;
END_ENTITY;

MAP iwd AS AGGREGATE [3:3] OF item_with_duplicates
FROM i : item
 FOR var := 1 TO 3
 SELECT
 id := i.id;
 index := var;
END_MAP;

ISO/NWI 10303-14 - WG11 / N103 © ISO

26

9.4.4.3 Control by iteration over an aggregate

Under the instantiation_foreach_control, at each iteration step, the next element of the
source attribute is bound to a variable and optionally the index position of that element is bound to an
iterator variable. The scope of these variable bindings includes the map_project_clause. For
example, for each element of the source attribute of type aggregate a target instance can be generated
and the element value can be assigned to a corresponding target attribute of type.

EXAMPLE 20 — In the following example, all item versions of one item are grouped together in
the source data model. In contrast, each item version is a stand-alone instance in the target data
model. This example shows that the FOR loop specifies an iteration over the elements of the
source attribute item_with_versions.id_of_versions. For each source instance and
for each element in that attribute a target instance is created. The target attribute item_id is
mapped in the same way for all the target instances which of item_version which correspond
to the same underlying item_with_versions. The target attribute version_id is assigned
to the value of the iterator variable version_iterator.

ENTITY item_version; --target data model
 item_id : STRING;
 version_id : STRING;
END_ENTITY;

ENTITY item_with_versions; -- source data model
 id : STRING;
 id_of_versions : LIST OF STRING;
END_ENTITY;

item_with_duplicates

id index

item item_version ddid

id its_version approved_by id its_ddi
d

id

0x01 #1 i_1 #3 smith 1 #3 iv_1 #5 #5 ddid_1

0x02 #1 i_1 #3 smith 2 #3 iv_1 #5 #5 ddid_1

0x03 #1 i_1 #3 smith 3 #3 iv_1 #5 #5 ddid_1

0x04 #2 i_2 #4 jones 1 #4 iv_2 #5 ddid_1

0x05 #2 i_2 #4 jones 2 #4 iv_2 #5 ddid_1

0x06 #2 i_2 #4 jones 3 #4 iv_2 #5 ddid_1

© ISO WG11 N103 - ISO/NWI 10303-14

27

MAP iv : AGGREGATE [0:?] OF item_version
FROM iwv : item_with_versions;
FOR EACH version_iterator OF iwv.id_of_versions INDEXING i
SELECT
 iv[i].item_id := iwv.id;
 iv[i].version_id := version_iterator;
END_MAP;

For example, the following target instances are built from the source instance below.
Source instance set:

 #1 = item_with_versions(1,(10,11,12));

Target instance set:

 #1 = item_version(1,10);
 #2 = item_version(1,11);
 #3 = item_version(1,12);

9.4.5 Partitions within a MAP declaration

 A single target entity may be related in a specific way to source data for some instances and differently
to source data for some other instances. Map partitions may be used to specify these differing relations.
A MAP declaration may be partitioned, each partition defining its own FROM language element and
selection criteria. Partitions, if present, shall be named. A partition_id names a partition.

If multiple target entities are listed in the header of the MAP declaration, different subsets of those enti-
ties may be created by each partition.

Rules and restrictions:

a) The partition_id shall be unique with respect to the inheritance hierarchy of the corre-
sponding target entity.

b) For every target entity declared in the map header, at least one partition shall be defined to cre-
ate instances for it.

Syntax:

71 map_partition = PARTITION partition_id ':' map_decl_body .

ISO/NWI 10303-14 - WG11 / N103 © ISO

28

EXAMPLE 21 — This example illustrates how various source entity types may be mapped into a
single target entity type using a MAP declaration containing partitions.

(* source schema *) (* target schema *)
SCHEMA src; SCHEMA tar;
ENTITY student; ENTITY person;
 name : STRING; name : STRING;
END_ENTITY; END_ENTITY;
ENTITY employee; END_SCHEMA;
 name : STRING;
END_ENTITY;
END_SCHEMA;

(* mapping schema *)
SCHEMA_MAP example;
MAP student_employee_to_person AS p : tar.person;
PARTITION student;
FROM s : src.student;
SELECT
 p.name := s.name;
PARTITION employee;
FROM e : src.employee;
SELECT
 p.name := e.name;
END_MAP;

9.4.6 Mapping to an entity type and its subtypes

EXPRESS-X allows for the specification of a map as a subtype of another map. Subtype map declara-
tions may extend the collection of entity instances created by its supertype map, specialize those
instances created and require additional selection criteria beyond those specified in the supertype map.
The specification of a target attribute assignment declared in a supertype map is inherited by its subtype
maps. Through this means the pattern of inheritance present in the target schema can be duplicated in
the mapping declarations.

Whether a subtype map extends the collection of entity instances created by its supertype map or spe-
cializes those instance created depends on whether the subtype map references target_parameter_ids
declared in the supertype map or whether it declare its own target_parameter_ids:

– If a map’s selection criteria and that of all its supertype maps is satisfied, the map may execute.

– A subtype map may reference in its map_decl_header a target parameter that is declared in
any of its supertype maps. The type created is the composition of types identified by the subtype
map target parameter and all supertype maps declaring a target parameter with this target parame-
ter id.

– A subtype map may introduce a target_parameter_id that is not defined in any of the supertype

© ISO WG11 N103 - ISO/NWI 10303-14

29

maps. In this case a new target entity of the type defined by the target parameter is created.

– Rules and Restrictions:

– The type combination must be one that is valid in the target schema.

EXAMPLE 22 — A mapping schema illustrating the assignment to attributes declared in super-
types and subtypes through supertype and subtype maps. Source entities are of one type,
s_project. Target entities are of type t_project and perhaps one of its subtypes,
in_house_project and external_project. The target_parameter_id, tp, used in the
supertype map (project_map) is used again in its subtype maps (in_house_map, ext_map) signify-
ing that the corresponding target entity is specialized in the subtype maps.

SCHEMA source_schema;
ENTITY s_project;
 name : STRING;
 project_type : STRING;
 cost : INTEGER;
 price : INTEGER;
 vendor : STRING;
END_SCHEMA;

SCHEMA target_schema;
ENTITY t_project;
SUPERTYPE OF (ONEOF (in_house_project, external_project));
 name : STRING;
 cost : INTEGER;
 management : STRING;
END_ENTITY;
ENTITY in_house_project;
SUBTYPE OF (t_project);
END_ENTITY;
ENTITY external_project;
SUBTYPE OF (t_project)
 price : INTEGER;
END_ENTITY;
END_SCHEMA;

ISO/NWI 10303-14 - WG11 / N103 © ISO

30

MAP project_map AS tp : target_schema.t_project;
FROM p : source_schema.s_project;
SELECT
 tp.name := p.name;
 tp.cost := p.cost;
END_MAP;

MAP in_house_map AS tp : target_schema.in_house_project;
SUBTYPE OF project_map;
WHERE (p.project_type = ’in house’);
SELECT
 tp.management := CHOICE (cost < 50000) THEN ’small accts’
 ELSE ’large accts’ ENDIF;
END_MAP;

MAP ext_map AS tp : target_schema.external_project;
SUBTYPE OF project_map;
WHERE (p.project_type = ’external’);
SELECT
 tp.price := p.price;
 tp.management = p.vendor;
END_MAP;

9.4.7 Explicit declaration of complex entity data types

Complex entity data types (see ISO10303-11:1994, clause3.2.1) may be explicitly declared in the map
header. A complex entity data type is referenced by an expression that lists the partial complex entity
data types that are combined to form it, separated by ‘&’.

The partial complex entity data types may be listed in any order.

Any partial complex entity data types that are included in another partial complex entity data type via
inheritance are not listed.

Rules and restrictions:

a) Each entity_ref shall be a reference to an entity which is visible in the current scope.

b) The referenced complex entity data type shall describe a valid domain within some schema (see
ISO10303-11:1994, annexB).

Syntax:

44 complex_entity_spec = entity_reference '&' entity_reference { '&'
entity_reference } .

© ISO WG11 N103 - ISO/NWI 10303-14

31

c) A given entity_ref shall occur at most once within a complex_entity_ref.

d) For each entity_reference declared in the complex_entity_spec, none of its supertype shall be
declared.

9.5 Schema_view declaration

A schema_view declaration defines a common scope for a collection of related mapping declarations. A
schema_view may contain the following kinds of declarations:

– constant declaration ();

– function declaration (clause9.6);

– procedure declaration (clause 9.7);

– rule declarations (clause 9.11);

– view declaration (clause 9.3).

The order in which declarations appear within a schema_view declaration is not significant.

Declarations in one schema_view or EXPRESS schema may be made visible within the scope of
another schema_view via an interface specification as described in clause 13.

EXAMPLE 23 — ap203_arm names a schema_view that may contain declarations defining a
view over the schema config_control_design in terms of the domain expert’s understanding of the
information requirements.

SCHEMA_VIEW ap203_arm;
REFERENCE FROM config_control_design;
VIEW part_version ...
(* other declarations as appropriate *)
END_SCHEMA_VIEW;

Syntax:

95 schema_view_decl = SCHEMA_VIEW schema_view_id {
reference_clause_extended } [constant_decl]
schema_view_body_element_list END_SCHEMA_VIEW ';' .

82 reference_clause_extended = REFERENCE FROM foreign_ref ['('
resource_or_rename { ',' resource_or_rename } ')'] ';' .

93 schema_view_body_element = function_decl | procedure_decl | view_decl
.

ISO/NWI 10303-14 - WG11 / N103 © ISO

32

9.6 Schema_map declaration

A schema_map declaration defines a common scope for a collection of related mapping declarations.

EXAMPLE 24 — iges2step names a schema_map that may contain declarations for trans-
lating geometry defined using an EXPRESS model base upon IGES into a model based on ISO
10303-203.

SCHEMA_MAP iges2step;
TARGET step_schema;
SOURCE iges_express_schema;
MAP iges_structure ...
(* other declarations as appropriate *)
END_SCHEMA_MAP;

The order in which declarations appear within a schema_map declaration is not significant. In partic-
ular, the order of the declarations has no effect upon the resulting mapping.

Declarations in one schema_map may be made visible within the scope of another schema_map via
an interface specification as described in clause13.3.3

A schema_map may contain the following kinds of declarations:

– constant declaration (clause9.5);

– function declaration (clause9.6);

– procedure declaration (clause9.7);

– type_map declaration (clause9.8);

– view declaration (clause9.3);

– map declaration (clause9.4);

– rule declaration (clause 9.11).

© ISO WG11 N103 - ISO/NWI 10303-14

33

The body of a schema_map shall have the same form as the body of a schema in ISO 10303-
11;1994, with the following exceptions:

– The schema_map shall include at least one MAP declaration.

– The schema_map shall include a target_interface_spec declaration.

– The schema_map shall include a source_interface_spec declaration.

– The schema_map shall not include the interface_specification declaration (defined
in ISO 10303-11;1994).

– The schema_map shall not include the entity declaration (defined in ISO 10303-11;1994).

– The schema_map shall not include the type declaration (defined in ISO 10303-11;1994).

EXAMPLE 25 — This example illustrates the use of required EXPRESS-X declarations. t1, t2 ,
t3, s1 and s2 designate EXPRESS schema. other_map designates an EXPRESS-X schema.

SCHEMA_MAP map_name;
 TARGET t1, t2, t3;
 SOURCE s1, s2;
IMPORT MAPPING other_map;
END_SCHEMA_MAP;

9.7 Create declaration

The CREATE declaration defines the form of an entity that, subject to a logical expression, s hall be cre-
ated in the target data set. The logical_expression is evaluated against entity extents identified
in the target_entity_reference. If the logical_expression does not evaluates to

Syntax:

87 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec {
target_interface_spec } source_interface_spec { source_interface_spec
} { map_interface_spec } { type_mapping_stmt } [constant_decl]
schema_map_body_element_list END_SCHEMA_MAP ';' .

108 target_interface_spec = TARGET schema_ref_or_rename [REFERENCE
resource_or_rename { ',' resource_or_rename }] ';' .

100 source_interface_spec = SOURCE schema_ref_or_rename [REFERENCE
resource_or_rename { ',' resource_or_rename }] ';' .

69 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename [
REFERENCE resource_or_rename { ',' resource_or_rename }] ';' .

111 type_mapping_stmt = TYPE_MAP type_reference FROM type_reference ';'
type_map_stmt_body type_map_stmt_body END_TYPE_MAP ';' .

85 schema_map_body_element = function_decl | procedure_decl | view_decl |
map_decl | create_map_decl .

ISO/NWI 10303-14 - WG11 / N103 © ISO

34

FALSE or if no logical_expression is specified, an entity shall be created in the target data set.
If the logical_expression evaluates to the indeterminate value, the behaviour is undefined.

Rules and restrictions:

a) The CREATE declaration shall not be used except within the scope of a schema map.

b) logical_expression shall evaluate to either a LOGICAL value or indeterminate.

c) target_entity_reference shall refer to entity identifiers defined in a target schema.

d) Attribute references of the map_attr_decl_stmt_list shall refer to attributes of entities
identified in the target_entity_reference .

EXAMPLE 26 — In the following, an instance of application_context is created in the target data
set provided that the entity extent of item (an entity type in a source schema) contains at least one
instance.

CREATE APPCNT INSTANCE_OF application_context
WHERE SIZEOF(EXTENT(item)) > 0;
application := ’’;
END_CREATE;

9.8 Constant declaration

Constants may be defined for use within the WHERE language element of a view or map declaration,
or within the body of a map declaration or algorithm.

Constant declarations are as defined in ISO10303-11:1994 clause9.4.

9.9 Function declaration

Functions may be defined for use within the WHERE language element of a view or map declaration,
or within the body of a map declaration.

Function declarations are as defined in ISO10303-11:1994 clause9.5.1.

Syntax:

45 create_map_decl = CREATE instance_id ':' target_entity_reference ';' [
WHERE logical_expression ';'] map_attr_decl_stmt_list END_CREATE ';'
.

© ISO WG11 N103 - ISO/NWI 10303-14

35

9.10 Procedure declaration

Procedures may be defined for use within the body of a map declaration.

Procedure declarations are as defined in ISO10303-11:1994 clause9.5.2.

9.11 Rule declaration

Rules may be defined for use within the SCHEMA_VIEW and SCHEMA_MAP language element.

Rule declarations are as defined in ISO 10303-11:1994 clause 9.6.

9.12 Type map declaration

A type map declaration specifies how a value of a defined type is mapped to a value of another type
within the scope of a schema map.

EXAMPLE 27 — The following specifies the mapping between the types dollar and dmark .
The target type dmark is mapped to the source type dollar by multiplying dollar with the
factor 1.5 to derive dmark . Any attribute assignment where a target attribute of type dmark is
mapped an expression of type dollar, the first type_map_stmt_body is applied.

TYPE_MAP dmark FROM dollar;
 dmark := 1.5 * dollar;
 dollar := dmark / 1.5;
END_TYPE_MAP;

The mapping is applied whenever the map_attr_expression evaluates to one of the base_types declared
in the type_map_stmt_body and the map attribute is declared to be of the other type_map_stmt_body
base_types. The appropriate type_map_stmt_body is applied to the value of the map attribute_expr and
the resulting value is assigned.

Rules and restrictions:

a) base_type shall a defined data type.

Syntax:

111 type_mapping_stmt = TYPE_MAP type_reference FROM type_reference ';'
type_map_stmt_body type_map_stmt_body END_TYPE_MAP ';' .

110 type_map_stmt_body = [schema_ref '.'] base_type ':='
type_assgnmt_expr ';' .

ISO/NWI 10303-14 - WG11 / N103 © ISO

36

10. Expressions

10.1 Overview

Expressions are combinations of operators, operands, and function calls that are evaluated to produce a
value.

Precedence of operators and the order of evaluation of expressions are as defined in
ISO 10303-11:1994 clause12. [POD replace this with the table, extended with @].

Entity constructors create instances that are local only to the function or procedure and do not exist in
either the target or the source.

10.2 View call

A view call is an expression that evaluates to a view instance or aggregate of view instances. The view
call provides a means to access a view instance through arguments corresponding to its binding
instance (when no IDENTIFIED_BY is defined) or IDENTIFIED_BY language element expressions
(when IDENTIFIED_BY is defined). If no view instance corresponds, the call evaluates to indetermi-
nate. A view call identifies a single partition of a view; if the view contains more than one partition, a
partition_qualification shall be present. When no IDENTIFIED_BY language element is present in the
partition, the number, type, and order of the actual parameters shall agree with that of the source param-
eters of the FROM language element in the partition. When an IDENTIFIED_BY language element is
present, the number, type and order of the actual parameters shall agree with that of the expressions of
the IDENTIFIED_BY langauge element.

A view call referencing a constant partition shall be passed an empty parameter list.

Syntax:

119 view_call = view_reference [partition_qualification] '(' expression {
',' expression } ')' .

© ISO WG11 N103 - ISO/NWI 10303-14

37

EXAMPLE 28 — This example illustrates the use of a view call to define a relationship between
two view data types. The IDENTIFIED_BY language element in the person_view specifies one
expression, a.creator ; view calls to person_view will therefore be supplied with one argument,
a STRING which is also the creator attribute of an approval entity instance. The IDENTIFIED_BY
clause in this view also serves to ensure the uniqueness of person_view instances (i.e. no two view
instances will have the same name attribute).

SCHEMA_VIEW example;
VIEW approver
 PARTITION person_part;
 FROM a : approval; p : person;
 WHERE a.creator = p.name;
 IDENTIFIED_BY a.creator;
 SELECT
 approver_id : INTEGER := p.id;
 PARTITION org_part;
 FROM a : approval; o : organization;
 WHERE a.creator = o.name;
 IDENTIFIED_BY a.creator;
 SELECT
 approver_id : INTEGER := o.id;
END_VIEW;

VIEW design_order;
 FROM a : approval;
 SELECT
 id : STRING := a.id;
 approved_by : approver :=
 approver\person_part(a.creator);
END_VIEW;
END_SCHEMA_VIEW;

SCHEMA src_schema;
ENTITY approval;
 id : STRING;
 creator : STRING;
END_ENTITY;
ENTITY person;
 name : STRING;
 id : INTEGER;
END_ENTITY;
END_SCHEMA;
(* Source data set in ISO 10303-21 form *)
#1=approval('a_1','Jones');
#2=approval('a_2','Smith');
#3=approval('a_3','Jones');
#4=person('Jones',123);
#5=person('Smith',234);

ISO/NWI 10303-14 - WG11 / N103 © ISO

38

(* Resulting view instances in ISO 10303-21 form *)
#101=approver(123);
#102=approver(234);
#103=design_order('a_1',#101);
#104=design_order('a_2',#102);
#105=design_order('a_3',#101);

If one or more of the actual parameters is indeterminate, the result of the view call is a SET containing
those view instances of the view extent that correspond to the non-indeterminate parameter values pro-
vided. If no view instances correspond the view call evaluates to indeterminate.

EXAMPLE 29 — In the following, the various versions associated with a part are collected by
using a partial explicit binding. Returned by the explicit binding call version_and_its_product is
the subset of the extent for which the second component of the binding is equal to the specified
product instance.

VIEW part;
FROM (p : product)
SELECT
 versions : SET OF version_and_its_product
 := version_and_its_product(?, p);
END_VIEW;

10.3 Map Call

A map call is an expression that evaluates to a target entity instance. A map call identifies a single par-
tition of a map; if the map contains more than one partition, a partition_qualification shall be present.
When no IDENTIFIED_BY language element is present in the partition, the number, type, and order of
the actual parameters shall agree with that of the source parameters of the FROM language element in
the partition. When an IDENTIFIED_BY language element is present, the number, type and order of
the actual parameters shall agree with that of the expressions of the IDENTIFIED_BY langauge ele-
ment.If the view call references a constant partition, then a empty parameter list shall be passed.

Rules and restrictions:

a) target_parameter_ref shall refer to a parameter reference declared in the MAP refer-
enced as map_ref.

Syntax:

66 map_call = target_parameter_ref [map_or_partition_qualification] '('
expression { ',' expression } ')' .

70 map_or_partition_qualification = '@' map_ref | | '@' map_ref '.'
partition_ref .

© ISO WG11 N103 - ISO/NWI 10303-14

39

EXAMPLE 30 — This example illustrates the use of a map call to define a relationship between
entities in the target schema.

(* source schema *)
SCHEMA source;
ENTITY approval;
 id : STRING;
 creator : STRING;
END_ENTITY;
END_SCHEMA;

SCHEMA target;
ENTITY person;
 id : STRING;
END_ENTITY;

ENTITY design_order;
 id : STRING;
 approved_by : person;
END_ENTITY;

MAP_SCHEMA example;
MAP person_map AS p : target.person;
FROM a : approval
IDENTIFIED_BY a.creator
SELECT
 p.id := a.creator;
END_MAP;

MAP design_order_map AS d : target.design_order;
FROM a : approval
SELECT
 d.id := a.id;
 d.approved_by := p@person(a.creator); -- explicit binding
END_MAP;
END_MAP_SCHEMA;

(* source instance set written as ISO 10303-21 instances *)
#1 = approval(’a_1’,’miller’);
#2 = approval(’a_2’,’jones’);
#3 = approval(’a_3’,’miller’);

(* Resulting target instances in ISO 10303-21 form *)
#101=person(‘Jones’);
#102=person(‘Smith’);
#103=design_order(‘a_1’,#101);
#104=design_order(‘a_2’,#102);
#105=design_order(‘a_3’,#101);

ISO/NWI 10303-14 - WG11 / N103 © ISO

40

A partial explicit binding is an explicit binding in which one or more of the parameters is indeterminate.
The result of a partial explicit binding is the subset of the extent that matches the parameter values that
are provided. If the subset is empty, the result of the partial explicit binding shall be indeterminate.

EXAMPLE 31 — In the following, the various versions associated with a part are collected by
using a partial explicit binding. Returned by the explicit binding call version_and_its_product is
the subset of the extent for which the second component of the binding is equal to the specified
product instance.

VIEW part;
FROM (p : product)
SELECT
 versions : SET OF version_and_its_product
 := version_and_its_product(?, p);
END_VIEW;

VIEW version_and_its_product;
FROM (pdf : product_definition_formation, p : product)
WHERE p :=: pdf.of_product;
SELECT
 the_version : product_definition_formation := pdf;
END_VIEW;

10.4 FOR expression

The FOR expression collects the result of iteration of an expression over the elements of an EXPRESS
aggregate. The collection is returned as an EXPRESS aggregate. The FOR expression may be used in
the map_attr_assgnmnt_expr.

The FOR expression iteration mechanism allows each element to be evaluated against a selection crite-
ria. Elements and of the aggregate can be processed step by step, selected, and manipulated.

The FOR expression is introduced for attribute assignment statements of MAP declarations to process a
set of elements and to assign a set as a result to the target attribute. For this purpose, an iteration mech-
anism is used where all elements of the set can be processed step by step, selected, and manipulated.

The iteration of the FOR expression is controlled either by the repeat control known from EXPRESS
(cf., ???). Alternatively, a more declarative approach can be specified using the FOR EACH concept. In
the latter case, the following language elements are available.

– The EACH language element defines the (name of the) iterator variable. That is, in each process-
ing step of the loop of the FOR expression, an element of the set is assigned to this iterator. The set
is determined by the IN- (and the FROM-) language element.

– The IN language element specifies the set over which it has to be iterated over. This is either an
(entity) extend. In this case the FROM language element is optional. That is, if it shall be iterated
over exact one (entity) extent without further restrictions the FROM language element need not to

© ISO WG11 N103 - ISO/NWI 10303-14

41

be specified. Alternatively, if it shall be iterated over an extent which is built upon many joined
source extents, the FROM language element (and the WHERE language element) are needed.

In addition to the entity extent, it can also be iterated over an attribute of type AGGREGATE. In
this case, the FROM language element is optional: if the source entity of this attribute to be iter-
ated over is not specified in the FROM language element of the MAP declaration, it shall be spec-
ified in the FROM language element of the FOR expression.

– The FROM language element of the FOR expression has the same semantics as the FROM lan-
guage element of the MAP declaration (cf., ???).

– The WHERE language element of the FOR expression has the same semantics as the WHERE lan-
guage element of the MAP declaration (cf., ???).

– The RETURN language element specifies an expression which has to be processed for each ele-
ment during the iteration. All processed elements together build the result aggregate data type
which is returned to the target attribute.

EXAMPLE 32 — FOR expression.

(* Source schema *)
ENTITY product_definition;
 product_name : STRING;
 description : STRING;
END_ENTITY;

ENTITY product_definition_name;
 name : STRING;
 of_product_definition : product_definition;
END_ENTITY;

(* Target schema *)
ENTITY component;
 names : SET [0:?] OF STRING;
 product_name : STRING;
 description : STRING;
END_ENTITY;

In this example, the target entity component maps to the source entity product_definition and all
instances of product_definition_name which reference one instance of product_definition
are grouped into the target attribute component.names. This is specified as follows.

ISO/NWI 10303-14 - WG11 / N103 © ISO

42

Mapping definition:
MAP component
FROM pd : product_definition
SELECT
 description := pd.description;
 product_name := pd.product_name;
 names := FOR EACH pdn_instance
 IN pdn
 FROM pdn : product_definition_name
 WHERE pdn.of_product_definition :=: pd
 RETURN pdn_instance.name
END_MAP;

This example also shows that the scope of the FROM language element of the MAP declaration can be
extended by the FROM language element of an FOR expression within this MAP declaration. That is,
product_definition_name is not within the scope of the root entity of the FROM language ele-
ment of the MAP declaration product_definition. In this case, the FOR expression specifies the
so-called outer join operation. That is, for each instance of product_definition a target instance
of component is built independent of the existence of instances of product_definition_name
which references this product_definition. If such instances of
product_definition_name do not exist, the value of component.names is the empty set.
Otherwise, those instances (resp. the value product_definition_name.name) are assigned to
the attribute component.names .

The RETURN language element can be nested in order to map attributes which are of type AGGRE-
GATE OF AGGREGATE. This is shown in the following example.

EXAMPLE 33 — Nested FOR expression. The example 32 is extended as follows.

Source schema:
ENTITY product_definition;
 (* as defined in Ex. 32 *)
END_ENTITY;

ENTITY product_definition_name;
 (* as defined in Ex. 32 *)
END_ENTITY;

ENTITY product_definition_value;
 of_pdn : product_definition_name;
 value : STRING;
END_ENTITY;

Target schema:
ENTITY component;
 values : SET [0:?] OF SET [0:?] OF STRING;
 product_name : STRING;
 description : STRING;
END_ENTITY;

© ISO WG11 N103 - ISO/NWI 10303-14

43

In addition to example 32, all instances of product_definition_value which reference one instance
of product_definition_name are grouped together and are assigned to the inner aggregate of com-
ponent.values. This is specified as follows.

Mapping definition:
MAP component
FROM pd : product_definition
SELECT
 description := pd.description;
 product_name := pd.product_name;
 names := FOR EACH pdn_instance
 IN pdn
 FROM pdn : product_definition_name
 WHERE pdn.of_product_definition :=: pd
 RETURN FOR EACH pdv_instance
 IN pdv
 FROM pdv : product_definition_value
 WHERE pdv.of_pdn :=: pdn_instance
 RETURN pdv_instance.value;
END_MAP;

The FOR expression supports parallel iteration (i.e. iteration where two or more iterator variables are
assigned to elements of sets). During each step of the iteration loop, all the iterator variables are
assigned to the next element of the corresponding set. This is shown in the following example.

EXAMPLE 34 — Parallel iteration with the FOR expression.

Source schema:
ENTITY persons;
 firstname : SET [0:?] OF STRING;
 lastname : SET [0:?] OF STRING;
END_ENTITY;

Target schema:
ENTITY set_of_persons;
 name : SET [0:?] OF STRING;
END_ENTITY;

It is assumed that persons.firstname[i] corresponds to persons.lastname[i] and that those
two values have to be concatenated and have to be assigned to set_of_persons.name[i].

Mapping specification:
MAP set_of_persons
FROM p : persons
SELECT
 name := FOR EACH firstname_value IN p.firstname AND
 EACH lastname_value IN p.lastname
 RETURN firstname_value + lastname_value;
END_MAP;

This example also shows that the FROM language element of the FOR expression is optional when it is a

ISO/NWI 10303-14 - WG11 / N103 © ISO

44

subset of the FROM language element of the MAP declaration. In this example, no predicates are needed to
select specific elements of the extent which is given by the IN language element. Thus, the WHERE lan-
guage element is omitted.

If the scope of the extent of the FOR loop (as specified by the foreach_in_clause_arg resp. the
repeat_control) is empty the FOR loop will be performed zero times.

Rules and restrictions:

a) The target attribute of the attribute assignment statement where the FOR expression is used in
shall be of type AGGREGATE.

10.5 Conditional expression

This concept is introduced for MAP declarations so that a specified expression is assigned to a target
attribute under some condition (or, else another expression is assigned). The conditional expressions
can be nested.

10.6 CASE expression

The CASE expression is similar to the CASE statement of EXPRESS.

Syntax:

50 for_expr = foreach_expr | forloop_expr .
51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg { AND

variable_id IN foreach_in_clause_arg } [from_clause] [where_clause]
RETURN map_attr_assgnmt_expr ';' .

52 foreach_in_clause_arg = attribute_reference | view_attribute_reference
| extent_reference .

54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .

Syntax:

73 map_cond_attr_expr = IF boolean_expression THEN map_attr_assgnmt_expr
[ELSE map_attr_assgnmt_expr] END_IF ';' .

© ISO WG11 N103 - ISO/NWI 10303-14

45

EXAMPLE 35 — CASE expression.

MAP my_approval
FROM a : approval
SELECT
 status := CASE a.status OF
 ’approved’ : 1;
 ’not approved’ : -1;
 ’indetermined’ : 0;
 OTHERWISE : 2;
 END_CASE;
END_MAP;

11. Built-in functions

11.1 Extent - general function

FUNCTION EXTENT (R : STRING) : SET OF GENERIC;

The EXTENT function returns the population of instances of the type specified by the parameter.

Parameters:

a) R is a string that contains the name of a entity data type or view data type. Such names are qual-
ified by the name of the schema which contains the definition of the type (‘SCHEMA.TYPE’).

Result: A set containing all instances of the entity data type or view data type specified in the parame-
ter. It is an error to specify as the parameter a type which is neither a view data type nor an entity data
type defined in a source schema.

Syntax:

40 case_expr = CASE selector OF { case_expr_action } [OTHERWISE ':'
expression] END_CASE ';' .

41 case_expr_action = case_label { ',' case_label } ':' expression .
71 map_case_expr = CASE selector OF { map_case_expr_action } [OTHERWISE

':' map_attr_assgnmt_expr] END_CASE ';' .
72 map_case_expr_action = case_label { ',' case_label } ':'

map_attr_assgnmt_expr .

ISO/NWI 10303-14 - WG11 / N103 © ISO

46

12. Scope and visibility

An EXPRESS-X declaration creates an identifier that can be used to reference the declared item in
other parts of the schema_view (or in other schema_views). Some EXPRESS-X constructs implicitly
declare items, attaching identifiers to them. An item is said to be visible in those areas where an identi-
fier for a declared item may be referenced. An item may only be referenced where its identifier is visi-
ble. For the rules of visibility, see clause10.2 For further information on referring to items using their
identifiers, see clause12.

Certain EXPRESS-X items define a region (block) of text called the scope of the item. This scope lim-
its the visibility of identifiers declared within it. Scope can be nested; that is, an EXPRESS-X item
which establishes a scope may be included within the scope of another item. There are constraints on
which items may appear within a particular EXPRESS-X item’s scope.

For each of the items specified in table2 below the following subclauses specify the limits of the scope
defined, if any, and the visibility of the declared identifier both in general terms and with specific
details.

12.1 Scope rules

The general scope rules are as defined in ISO10303-11:1994.

12.2 Visibility rules

The general visibility rules are as defined in ISO10303-11:1994.

Table 2 — Scope and identifier defining items

Item Scope Identifier

view attribute •

view • •

partition • •

schema_view • •

© ISO WG11 N103 - ISO/NWI 10303-14

47

12.3 Explicit item rules

The following language elements provide more detail on how the general scoping and visibility rules
apply to the various EXPRESS-X items.

12.3.1 Schema_view

Visibility: A schema_view identifier is visible to all other schema_views.

Scope: A schema_view declaration defines a new scope. This scope extends from the keyword
SCHEMA_VIEW to the keyword END_SCHEMA_VIEW that terminates that schema_view declara-
tion.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a
schema_view declaration:

– constant;

– function;

– map;

– procedure;

– rule;

– type_map;

– view.

12.3.2 View

Visibility: A view identifier is visible in the scope of the function, procedure, rule, or schema_view in
which it is declared. A view identifier remains visible within inner scopes which redeclare that identi-
fier.

Scope: A view declaration defines a new scope. This scope extends from the keyword VIEW to the
keyword END_VIEW which terminates that entity declaration.

Declarations: The following EXPRESS-X items may declare identifiers within the scope of a view
declaration:

– view attribute;

– partition label.

ISO/NWI 10303-14 - WG11 / N103 © ISO

48

12.3.3 View partition label

Visibility: A partition label is visible in the scope of the view in which it is declared.

12.3.4 View attribute identifier

Visibility: A view attribute identifier is visible in the scope of the view in which it is declared.

13. Interface specification

This clause specifies the constructs that enable items declared in one schema, schema_view, or
schema_map to be visible in another schema_view or schema_map. The REFERENCE specification
enables item visibility.

A foreign declaration is any declaration which appears in a foreign schema, schema_view, or
schema_map (which is not the current schema_view or schema_map).

A foreign EXPRESS or EXPRESS-X item may be given a new name in the current schema_view or
schema_map. The item shall be referred to in the current schema by the new name if given following
the AS keyword. This can be used in order to rename EXPRESS items that would otherwise use
EXPRESS-X reserved words as their identifier.

13.1 Reference interface specification

A REFERENCE specification enables the following items, declared in a foreign schema, schema_view,
or schema_map, to be visible in the current schema_view or schema_map:

– View;

– Map;

Syntax:

69 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename [
REFERENCE resource_or_rename { ',' resource_or_rename }] ';' .

89 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename |
schema_view_ref_or_rename .

90 schema_map_ref_or_rename = [schema_map_alias_id ':'] schema_map_ref
.

97 schema_view_ref_or_rename = [schema_view_alias_id ':']
schema_view_ref .

© ISO WG11 N103 - ISO/NWI 10303-14

49

– Type_map;

– Constant;

– Entity;

– Function;

– Procedure;

– Type.

The REFERENCE specification gives the name of the foreign schema, schema_view, or schema_map,
and optionally the names of EXPRESS or EXPRESS-X items declared therein. If there are no names
specified, all the items declared in the foreign schema, schema_view, or schema_map are visible within
the current schema_view or schema_map.

The schema_ref may be an EXPRESS-X reserved word that is not also an EXPRESS reserved word.

Rules and restrictions:

13.2 Implicit interfaces

13.3 SCHEMA_MAP interfaces

A schema_map interface specification identifies the source and target schema and allows items defined
in these schema to be visible within the schema map.

13.3.1 Source schema interface

The source schema interface specifies the name of the source schema.

Syntax:

82 reference_clause_extended = REFERENCE FROM foreign_ref ['('
resource_or_rename { ',' resource_or_rename } ')'] ';' .

53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .

Syntax:

87 schema_map_decl = SCHEMA_MAP schema_map_id target_interface_spec {
target_interface_spec } source_interface_spec { source_interface_spec
} { map_interface_spec } { type_mapping_stmt } [constant_decl]
schema_map_body_element_list END_SCHEMA_MAP ';' .

ISO/NWI 10303-14 - WG11 / N103 © ISO

50

13.3.2 Target schema interface

The target schema interface specifies the name of the target schema.

13.3.3 Map interface

The map interface specifies how one SCHEMA_MAP may reference another.

Syntax:

100 source_interface_spec = SOURCE schema_ref_or_rename [REFERENCE
resource_or_rename { ',' resource_or_rename }] ';' .

Syntax:

108 target_interface_spec = TARGET schema_ref_or_rename [REFERENCE
resource_or_rename { ',' resource_or_rename }] ';' .

Syntax:

69 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename [
REFERENCE resource_or_rename { ',' resource_or_rename }] ';' .

© ISO WG11 N103 - ISO/NWI 10303-14

51

Annex A
(normative)

EXPRESS-X language syntax

This annex defines the lexical elements of the language and the grammar rules that these elements shall
obey.

NOTE — This syntax definition will result in ambiguous parsers if used directly. It has been written so as
to convey information regarding the use of identifiers. The interpreted identifiers define tokens that are ref-
erences to declared identifiers, and therefore should not resolve to simple_id. This requires a parser devel-
oper to enable identifier reference resolution and return the required reference token to a grammar rule
checker.

All of the grammar rules of EXPRESS specified in annex A of ISO 10303-11:1994 are also grammar
rules of EXPRESS-X. In addition, the grammar rules specified in the remainder of this annex are gram-
mar rules of EXPRESS-X.

A.1 Tokens

The following rules specify the tokens used in EXPRESS-X. Except where explicitly stated in the syn-
tax rules, no white space or remarks shall appear within the text matched by a single syntax rule in the
following clauses.

A.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-X.

NOTE — This subclause follows the typographical convention that each keyword is represented by a syn-
tax rule whose left hand side is that keyword in uppercase.

NOTE — All the keywords of EXPRESS are also keywords of EXPRESS-X
1 BETWEEN = 'between' .
2 CHOICE = 'choice' .
3 CREATE = 'create'.
4 EACH = 'each'.
5 ELSIF = 'elsif' .
6 END_CHOICE = 'end_choice' .
7 END_CREATE = 'end_create'.
8 END_FOR = 'end_for'.
9 END_MAP = 'end_map'.

10 END_SCHEMA_MAP = 'end_schema_map'.
11 END_SCHEMA_VIEW = 'end_schema_view'.
12 END_TYPE_MAP = 'end_type_map'.
13 END_VIEW = 'end_view'.

ISO/NWI 10303-14 - WG11 / N103 © ISO

52

14 EXTENT = 'extent' .
15 IDENTIFIED_BY = 'identified_by'.
16 IMPORT_MAPPING = 'import_mapping'.
17 MAP = 'map'.
18 PARTITION = 'partition'.
19 SCHEMA_MAP = 'schema_map'.
20 SCHEMA_VIEW = ’schema_view’.
21 SOURCE = 'source'.
22 TARGET = 'target'.
23 TYPE_MAP = 'type_map'.
24 VIEW = 'view'.

A.1.2 Character classes

25 digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' .
26 letter = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j'

 | 'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't'
 | 'u' | 'v' | 'w' | 'x' | 'y' | 'z' .

27 simple_id = letter { letter | digit | '_' } .

A.1.3 Interpreted identifiers
NOTE — All interpreted identifiers of EXPRESS are also interpreted in EXPRESS-X

28 instance_ref = instance_id .
29 network_ref = network_id .
30 partition_ref = partition_id .
31 schema_map_ref = schema_map_id .
32 schema_view_ref = schema_view_id .
33 source_schema_ref = schema_ref .
34 target_schema_ref = schema_ref .
35 view_attribute_ref = view_attribute_id .
36 view_ref = view_id .

A.2 Grammar rules

37 attr_assgnmt_expr = type_assgnmt_expr | view_attr_assgnmt_expr
 | map_attr_assgnmt_expr .

38 attribute_reference = attribute_ref
| primary_extended attribute_qualifier .

39 binding_decl = [from_clause] [where_clause]
 [identified_by_clause].

40 boolean_expression = expression .

© ISO WG11 N103 - ISO/NWI 10303-14

53

41 choice_case_expr = CHOICE selector OF
 case_label {',' case_label }
 THEN attr_assgnmt_expr ';'
 { case_label {',' case_label }
 THEN attr_assgnmt_expr ';' }
 [ELSE attr_assgnmt_expr ';']
 END_CHOICE .

42 choice_expr = choice_if_expr | choice_case_expr .
43 choice_if_expr = CHOICE logical_expression THEN attr_assgnmt_expr ';'

 { ELSIF logical_expression THEN attr_assgnmt_expr ';' }
 [ELSE attr_assgnmt_expr ';']
 END_CHOICE .

44 complex_entity_spec = entity_reference '&' entity_reference
 { '&' entity_reference } .

45 create_map_decl = CREATE instance_id ':' target_entity_reference ';'
 [WHERE logical_expression ';']
 map_attr_decl_stmt_list
 END_CREATE ';' .

46 entity_instantiation_loop = FOR instantiation_loop_control ’;’ .
47 entity_qualifier = '.' entity_ref .
48 entity_reference = [(schema_map_ref | schema_view_ref

 | schema_ref) '.'] entity_ref .
49 extent_reference = source_entity_reference | view_reference .
50 for_expr = foreach_expr | forloop_expr .
51 foreach_expr = FOR EACH variable_id IN foreach_in_clause_arg

 { AND variable_id IN foreach_in_clause_arg }
 [from_clause] [where_clause]
 RETURN map_attr_assgnmt_expr ';' .

52 foreach_in_clause_arg = attribute_reference
 | view_attribute_reference | extent_reference .

53 foreign_ref = schema_ref | schema_view_ref | schema_map_ref .
54 forloop_expr = FOR repeat_control RETURN map_attr_assgnmt_expr ';' .
55 from_clause = FROM source_parameter { ';' source_parameter } ';'.
56 source_parameter = source_parameter_id { ',' source_parameter_id } ':'

extent_reference.
57 identified_by_clause = IDENTIFIED_BY expression { ',' expression } ';'.
58 inline_view_decl = VIEW from_clause [where_clause]

 [view_project_clause] END_VIEW ';' .
59 instance_id = simple_id .
60 instance_qualifier = '.' instance_ref .
61 instantiation_foreach_control = EACH variable_id

 IN source_attribute_reference
 [INDEXING variable_id]
 { AND variable_id
 IN source_attribute_reference
 [INDEXING variable_id] } .

62 instantiation_loop_control = instantiation_foreach_control
 | repeat_control .

ISO/NWI 10303-14 - WG11 / N103 © ISO

54

63 map_attr_assgnmt_expr = expression | choice_expr | for_expr
 | map_call .

64 map_attr_decl_stmt_list = map_attribute_declaration
 { map_attribute_declaration } .

65 map_attribute_declaration = [target_parameter_ref
 [index_qualifer]
 [group_qualifier] '.']
 attribute_ref [index_qualifier] ':='
 map_attr_assgnmt_expr ';' .

66 map_call = target_parameter_ref [map_or_partition_qualification]
 '(' expression { ',' expression } ')' .

67 map_decl = MAP map_id AS target_parameter { target_parameter }
 ((map_decl_body { map_partitions }) | map_decl_body)
 END_MAP ';' .

68 map_decl_body = [subtype_of_clause] binding_decl
 { entity_instantiation_loop }
 map_project_clause .

69 map_interface_spec = IMPORT_MAPPING schema_map_or_view_ref_or_rename
 [REFERENCE resource_or_rename
 { ',' resource_or_rename }] ';' .

70 map_or_partition_qualification = '@' map_ref |
| '@' map_ref '.' partition_ref .

71 map_partition = PARTITION partition_id ':' map_decl_body .
72 map_partitions = map_partition { map_partition } .
73 map_project_clause = (SELECT map_attr_decl_stmt_list) | (RETURN

expression) .
74 map_reference = [schema_map_ref '.'] map_ref .
75 map_id = simple_id .
76 map_ref = map_id .
77 partition_id = simple_id .
78 partition_qualification = '\' partition_ref .
79 primary_extended = qualifiable_factor_extended { qualifier_extended } .
80 qualifiable_factor_extended = qualifiable_factor | schema_map_ref |

schema_view_ref | view_ref | map_call | view_call |
view_attribute_ref | instance_ref .

81 qualifier_extended = qualifier | instance_qualifier | entity_qualifier
 | view_attribute_qualifier .

82 reference_clause_extended = REFERENCE FROM foreign_ref
 ['(' resource_or_rename
 { ',' resource_or_rename } ')'] ';' .

83 schema_alias_id = schema_id .
84 schema_map_alias_id = schema_map_id .
85 schema_map_body_element = function_decl | procedure_decl

 | view_decl | map_decl | create_map_decl .
86 schema_map_body_element_list = schema_map_body_element

 { schema_map_body_element } .

© ISO WG11 N103 - ISO/NWI 10303-14

55

87 schema_map_decl = SCHEMA_MAP schema_map_id
 target_interface_spec { target_interface_spec }
 source_interface_spec { source_interface_spec }
 { map_interface_spec }
 { type_mapping_stmt }
 [constant_decl]
 schema_map_body_element_list
 END_SCHEMA_MAP ';' .

88 schema_map_id = simple_id .
89 schema_map_or_view_ref_or_rename = schema_map_ref_or_rename

 | schema_view_ref_or_rename .
90 schema_map_ref_or_rename = [schema_map_alias_id ':']

 schema_map_ref .
91 schema_ref_or_rename = [schema_alias_id ':'] schema_ref .
92 schema_view_alias_id = schema_view_id .
93 schema_view_body_element = function_decl | procedure_decl | view_decl .
94 schema_view_body_element_list = schema_view_body_element {

schema_view_body_element } .
95 schema_view_decl = SCHEMA_VIEW schema_view_id {

reference_clause_extended } [constant_decl]
schema_view_body_element_list END_SCHEMA_VIEW ';' .

96 schema_view_id = simple_id .
97 schema_view_ref_or_rename = [schema_view_alias_id ':']

 schema_view_ref .
98 source_attribute_reference = attribute_reference |

view_attribute_reference .
99 source_entity_reference = entity_reference .

100 source_interface_spec = SOURCE schema_ref_or_rename
 [REFERENCE resource_or_rename
 { ',' resource_or_rename }] ';' .

101 source_parameter_id = parameter_id .
102 subtype_of_clause = SUBTYPE OF '(' view_or_map_reference

 { ',' view_or_map_reference } ')' .
103 syntax = schema_map_decl | schema_view_decl .
104 target_parameter = [target_parameter_id

 { ',' target_parameter_id } ':']
 [AGGREGATE [bound_spec] OF]
 target_entity_reference ';' .

105 target_parameter_id = parameter_id .
106 target_parameter_ref = target_parameter_id .
107 target_entity_reference = entity_reference | complex_entity_spec |

target_schema_ref '.' '(' complex_entity_spec ')' .
108 target_interface_spec = TARGET schema_ref_or_rename

 [REFERENCE resource_or_rename
 { ',' resource_or_rename }] ';' .

109 type_assgnmt_expr = expression | choice_expr .
110 type_map_stmt_body = [schema_ref '.']

 base_type ':=' type_assgnmt_expr ';' .

ISO/NWI 10303-14 - WG11 / N103 © ISO

56

111 type_mapping_stmt = TYPE_MAP
 type_reference FROM type_reference ';'
 type_map_stmt_body type_map_stmt_body
 END_TYPE_MAP ';' .

112 type_reference = [schema_ref '.'] type_ref .
113 view_attr_assgnmt_expr = expression | choice_expr | inline_view_decl

 | view_call .
114 view_attr_decl_stmt_list = view_attribute_decl

 { view_attribute_decl } .
115 view_attribute_decl = view_attribute_id ':' [source_schema_ref '.']

 base_type ':=' view_attr_assgnmt_expr ';' .
116 view_attribute_id = simple_id .
117 view_attribute_qualifier = '.' view_attribute_ref .
118 view_attribute_reference = view_attribute_ref

| primary_extended view_attribute_qualifier .
119 view_call = view_reference [partition_qualification]

 '(' expression { ',' expression } ')' .
120 view_decl = VIEW view_id [: base_type][supertype_rule] [

subtype_of_clause] ';'
 (view_partitions | view_decl_body)
 END_VIEW ';' .

121 view_decl_body = binding_decl view_project_clause .
122 view_id = simple_id .
123 view_or_map_reference = view_reference | map_reference .
124 view_partition = PARTITION partition_id ';' view_decl_body .
125 view_partitions = view_partition { view_partition } .
126 view_project_clause = (SELECT view_attr_decl_stmt_list) | (RETURN

expression) .
127 view_reference = [(schema_map_ref | schema_view_ref) '.']

 view_ref .

A.3 EXPRESS Syntax

128 add_like_op = '+'| '-' | OR | XOR .
129 bound_1 = numeric_expression .
130 bound_2 = numeric_expression .
131 bound_spec = '[' bound_1 ':' bound_2 ']' .
132 built_in_constant = CONST_E | PI | SELF | '?' .
133 built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS

 | EXP | FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND
 | LOINDEX | LOG | LOG2 | LOG10 | NVL | ODD | ROLESOF
 | SIN | SIZEOF | SQRT | TAN | TYPEOF | USEDIN | VALUE
 | VALUE_IN | VALUE_UNIQUE .

134 constant_factor = built_in_constant | constant_ref .
135 enumeration_reference = [type_ref '.'] enumeration_ref .
136 expression = simple_expression [rel_op_extended simple_expression] .

© ISO WG11 N103 - ISO/NWI 10303-14

57

137 factor = simple_factor ['**' simple_factor] .
138 logical_expression = expression .
139 numeric_expression = simple_expression .
140 repeat_control = [increment_control] [while_control]

 [until_control] .
141 simple_factor = aggregate_initializer | entity_constructor

 | enumeration_reference | interval | query_expression
 | ([unary_op] ('(' expression ')' | primary)) .

A.4 Cross reference listing

(informative)
Bibliography

EXPRESS-V language (ISO TC184/SC4/WG5 N251).

EXPRESS-M language (ISO TC184/SC4/WG5 N243).

BRITTY language.

Wirth, Niklaus, ”What can we do about the unnecessary diversity of notations for syntactic defini-
tions?,” Communications of the ACM, November 1977, v. 20, no. 11, p. 822.

ISO/NWI 10303-14 - WG11 / N103 © ISO

58

Annex B
(normative)

EXPRESS-X to EXPRESS Tranformation Algorithm

This annex describes how a collection of view declarations may be transformed into a collection of
EXPRESS entity declarations suitable for representing the results of an EXPRESS-X execution. The
transformation is described as an algorithm taking the text of a view declaration as input and producing
the text of an entity declaration as output. The algorithm is given here for specification purposes only,
not to prescribe a particular implementation.

The transformed entities are assumed to exist in a uniquely named schema, into which all necessary for-
eign declarations have been interfaced.

Algorithm:

a) If the view declaration is a SELECT view (i.e., does not define any view attributes), skip the
declaration.

b) Change the keyword VIEW to ENTITY.

c) Delete entirely any FROM ,WHERE, and/or IDENTIFIED_BY clauses. Delete only WHERE
clauses in the header; do not delete constraint where clauses.

d) Delete the keyword SELECT.

e) If the view declaration contains partitions, delete entirely all but the first partition declaration,
and delete the keyword PARTITION and the partition identifier (if any) from the first partition
declaration.

f) Delete the assignment operator and expression for each view attribute.

g) Change the keyword END_VIEW to END_ENTITY.

© ISO WG11 N103 - ISO/NWI 10303-14

59

EXAMPLE 36 —

VIEW a ABSTRACT SUPERTYPE;
PARTITION one:
FROM b:one, c:two
WHERE cond1;
 cond2;
SELECT
 x : attr1 := expression1;
 y : attr2 := expression2;
PARTITION two:
FROM d:two, e:three
WHERE cond3;
 cond4;
SELECT
 x : attr1 := expression3;
 y : attr2 := expression4;
END_VIEW;

is transformed into the following EXPRESS entity declaration:

ENTITY a ABSTRACT SUPERTYPE;
 x : attr1;
 y : attr2;
END_ENTITY;

EXAMPLE 37 —

VIEW b SUBTYPE OF (a);
PARTITION one:
WHERE cond5;
SELECT
 z : attr3 := expression5;
PARTITION two:
WHERE cond6;
SELECT
 z : attr3 := expression6;
WHERE
 WR2 : rule_expression2;
END_VIEW;

is transformed into the following EXPRESS entity declaration:

ENTITY b SUBTYPE OF (a);
 z : attr3;
WHERE
 WR2 : rules_expression2;
END_ENTITY;

ISO/NWI 10303-14 - WG11 / N103 © ISO

60

Annex C

13.3.3.1 Push mapping

An implementation shall be said to be a push mapping implementation if it meets all of the following
criteria:

– The mapping engine accepts one or more source data sets, and produces one or more output data
sets.

– The output data sets are derived from the input data sets by the execution and evaluation of all of
the VIEW and MAP declarations.

– Every instance in the source data sets is mapped as specified in the mapping schema into the out-
put data sets.

13.3.3.2 Pull mapping

An implementation shall be said to be a pull mapping implementation if it meets all of the following
criteria:

– The mapping engine accepts one or more source data sets.

– Specified target data instances, and only those specified, are derived on demand from the input
data sets by the execution and evaluation of the appropriate VIEW or MAP declarations.

NOTE — This part of ISO 10303 does not define how VIEW / MAP declarations are selected for pull
mapping.

13.3.3.3 Support of constraint checking

An implementation shall be said to support constraint checking if it implements the concepts described
in clause 9.6 of ISO 10303-11:1994 against entity instances in target populations and against view
instances in the view extents.

NOTE — The evaluation of constraints has no effect on execution.

Propagation of updates is not possible in situations where any of the following hold:

– The view / target entity is derived from / mapped to two or more source entities by applying a join
operation. (For example, the view / target entity person_in_dept corresponds to the source
entities person and department where the join condition person.id = depart-
ment.person_id evaluates to true.)

– Duplicates (with respect to value equivalence of attributes) which exist in the source data are elim-
inated in the view / target data.

– View / target attributes are derived from / mapped to source schema elements by applying mathe-

© ISO WG11 N103 - ISO/NWI 10303-14

61

matical expressions that are not mathematically invertible.

– The view / target schema defines additional subtypes which do not exist in the source schema(s).

– Subtypes which are defined in the source schema(s) are projected (i.e., not contained) in the view /
target schema.

– The sort order of source attributes of type AGGREGATE is eliminated in the view / target schema.

– Duplicates (with respect to value equivalence) of elements of source attributes of type AGGRE-
GATE are eliminated in the view / target schema.

– A single source entity corresponds to a network of interconnected view / target entities (by rela-
tionships or equivalence of attribute values1).

1. The latter kind of relationship is comparable to primary key - foreign key relationships in the relational
data model.

ISO/NWI 10303-14 - WG11 / N103 © ISO

62

